
From Scenariosto Code: An Air Traffic Control CaseStudy

JonWhittle
QSSGroup/NASA AmesResearchCenter

jonathw@email.arc.nasa.gov

RichardKwan
Raytheon/NASA AmesResearchCenter

rkwan@mail.arc.nasa.gov

Jyoti Saboo
Foothill College/NASA AmesResearchCenter

jsaboo@email.arc.nasa.gov

Abstract

Two high profile workshopsat OOPSLAand ICSE,an
IEEEComputerarticle byDavidHarel anda growingnum-
ber of research papers haveall suggestedalgorithmsthat
translatescenariosof a system’s behavior into statema-
chines.Oneof theusesof such algorithmsis in thetransi-
tion from requirementsscenariosto componentdesign.To
date, however, there hasbeenno real evaluation of these
algorithmson a realistic casestudy. In this paper, we do
exactly that for the algorithm presentedin [10]. Our case
studyis a componentof anair traffic advisorysystemdevel-
opedat NASAAmesResearch Center.

1 Intr oduction

Therehasbeena lot of interestrecentlyin the possible
role of algorithmsthat generatestatemachinesautomati-
cally from scenariosof intendedsystembehavior — wit-
ness,for example,successfulworkshopsat theICSE02and
OOPSLA01conferences.A scenariois a traceof an in-
dividual executionof a (software) artifact [9]. Scenarios
arewidely usedbecausethey describeconcreteinteractions
andarethereforeeasierfor customersanddomainexperts
to usethananabstractmodel. Many popularsoftwarepro-
cessesadvocatethe developmentof scenariosasan initial
softwaredesignactivity. Thesescenariosarethenusedas
a startingpoint to develop more detaileddesigns,e.g., in
the form of statemachines.An obviousquestionto askis
whetherthis transitioncanbe partially automated.In fact,
Harelraisedthisquestionin hisoriginalpaperonstatecharts
[2] andresearchersarenow beginningto investigateit (e.g.,
[4, 5]). To date,however, the focushasbeenon develop-
ing algorithmsto translatefrom scenariosto statemachines.
The transitionis essentiallyfrom a global scenario-based
view (in which interactionsbetweenall systemcomponents

areconsidered)to local component-basedviews (in which
a statemachineis given for eachcomponentasa precur-
sor to implementation).To the authors’knowledge,there
have beenno significantcasestudiesin using thesealgo-
rithmsto translatefrom requirementsscenariosto statema-
chines. In this paper, we do exactly that — we apply the
algorithmfrom [10] to theweathercontrollogic subsystem
of CTAS (CenterTRACON AutomationSystem)which is
underdevelopmentat NASA AmesResearchCenter. The
objective of this studywasto assesswhetherit is possible
to usescenario-to-statemachinealgorithms(ss-algorithms)
to reliably developmodelsof a distributedsystem.

2 Background

A scenariocanbethoughtof asaparticularpaththrough
the (intendedor actual)behavior of a system. Scenarios
can be either exemplary– in which one concretepath is
described– or complete,in which a more abstractrepre-
sentationdescribingmultiple concreteinstancesis given.
Scenariostypically involve multiple componentsof a sys-
tem. Scenario-to-statemachinealgorithmscanbe usedon
bothcompleteandexemplaryscenarios.Their application
to exemplaryscenariosis generallyusefulfor exploring an
incompletesetof requirementsto validateor extendit. In
contrast,completescenarioscanbe usedto fully specifya
systemand completestatemachinescan be derived from
them. In this paper, we will considerthecompletecase.In
addition,we will assumethat scenariosaregivenasUML
sequencediagramsandour translationalgorithm[10] will
outputUML statecharts.

Themajorchallengefor ss-algorithmsliesin thefactthat
eachscenariois usuallywritten in isolationfrom theothers.
To obtaina local modelof eachcomponent,the scenarios
have to beweavedtogetherin sucha way thatonly behav-
ior relevant to that componentis extractedandmergedto-
gether. Most ss-algorithmshave astheir basisa translation

1

in which messagesreceivedby a componentin a scenario
areconsideredas trigger eventsin the component’s state-
chart. Similarly, messagessent to a componentare con-
sideredasactionsfor thatcomponent(seefigure11). What
distinguishesdifferentss-algorithmsis in thewaythey iden-
tify samestatesin differentscenariosandhenceweave the
scenarios.[7] weavesscenariosbasedonly on a common
prefix in the messagesandhencecannotmerge statesthat
are the samebut do not stemfrom the samesequenceof
messages.SCED[4] appliesmerging basedon the names
of the actionsbut this doesnot allow the sameaction to
havea differenteffect in differentstates.[5] andothersuse
specialstatelabelsto explicitly identify pointsin different
scenarios.[10] allowstheuserto givemoredeclarativecon-
straints(in the form of messagepre/post-conditions)from
which stateidentitiescanbederived. In this casestudy, we
will usethess-algorithmfrom [10] extendedwith thestate
labelsfeature. Statelabelsfit this particularproblemwell
becausethescenarioswerewell defined.

p

q

r

s

p/q

r/s

A B C
for B

States

Figure 1. The basic idea underl ying most ss-
algorithms

3 The CaseStudy

CTAS (CenterTRACON AutomationSystem)[1] is a
setof tools designedto help air traffic controllersmanage
the increasinglycomplex air traffic flows at large airports.
Theprojectbeganin 1991andprototypesarenow deployed
at Denver and Dallas/Fort Worth airports. Extensionsto
the coreCTAS systemareconstantlybeingintegratedand
incorporatethe latestdevelopmentsfrom researchinto air
traffic control systems.Figure2 givesan overview of the
software architecturefor CTAS. CTAS consistsof a set
of advisorytools anda setof processesthat supportthese
tools. In Figure 2, CM is the CommunicationsManager
which handlesall communicationsbetweenthevariousad-
visory tools and supportprocesses.TS is the Trajectory
Synthesizerwhich generates4D trajectoriesandETAs that
all CTAS toolsdependon. RA (RouteAnalyzer)generates

1As usual,a/b denotesthat a is a trigger event andb is the action
carriedout in responseto thetrigger.

all possiblefuture routesfor an aircraft. PFS(Profile Se-
lector)assignsrunwaysfor approachingaircraft.PGUI and
TGUI aregraphicaluserinterfaces.WDAD isascriptthatis
responsiblefor gatheringweatherdatafiles from hostsand
making themavailableon the CTAS network file system.
WDPD is responsiblefor convertingraw weatherfiles pro-
videdvia WDAD into binaryweatherfilesusableby CTAS.

Figure 2. CTAS Architecture Description
(taken from ���������	����
�
�
�����������������������������������!

Oneof themostcrucialpartsof anair traffic controlsys-
temis thesubsystemthatdealswith weatherdata.Adverse
weatherconditionscangrind an entire traffic control sys-
temto ahalt,soit is imperativethateachof thecomponents
of CTAS is notifiedof weatherforecastupdates.The sub-
ject of the casestudyis the subsystemof CTAS thatdeals
with weatherdataupdates. The top-level requirementof
thissystemis thateveryclient thatusesweatherdatashould
be notified of a weatherupdateandall clientsshouldbe-
gin usingthe updatedweatherdataat the sametime. The
logic thatimplementsthissubsystemis definedby tenpages
of Englishtextual requirements.For eachweatherupdate,
a WeatherCycle is invoked to updateall weatheraware
clients. Similarly, theWeatherCycle is invokedto provide
weatherdatato new clients.TheWeatherCycleis split into
two subcycles– one for the overall control of the update,
andone to keeptrack of the relative statesof the clients.
Eachrequirementdescribesthebehavior of theCM accord-
ing to thecurrentstagein thecycle, for example:

2.8.9 The CM should perform the following actions
when the Weather Cycle status is ‘post-
initializing’ and the newly connected
weather-aware client has responded no to
the CTAS_USE_NEW_WTHR messages
(i.e., wthr_status = FAILED_USE)

2

(a) it should set the Weather Cycle status to ‘done’;
(b) it should enable the F2 weather control panel

‘‘set’’ button
(c) it should send a CM_CLOSE_CONNECTION message to

the newly connected client

4 Objectives

The completesetof requirementsdescribesa statema-
chine expressingthe weatherupdatelogic componentof
CTAS, where each requirementdescribesa partial path
throughthe statemachine(i.e., a partial scenario).These
partialscenariosalsooverlap— therequirementsdesigner
wrotedown eachrequirementwithout regardfor how it in-
teractswith otherrequirements.

Thecodethat implementstheweatherupdatelogic had
alreadybeenimplementedmanuallyin C. Theobjective of
thecasestudywasto reproducethis codedirectly from the
requirementsscenarios.The personnelon the casestudy
consistedof asoftwaredeveloperfrom theCTAS team(not
the original developerof the code),oneof the researchers
who developedthess-algorithm[10] anda student.There-
quirementswere translatedinto UML sequencediagrams
from which statemachineswere automaticallygenerated
using the tool from [10]. The commercialtool Rational
RoseRealTime [3] was then usedto generateC++ code
from the statemachines. This code was integratedinto
the existing systemandtestedagainstthe original, manu-
ally developedweathercontrol logic code.Twentyof these
requirementswerewritten asUML sequencediagrams.In
general,the researcherand studentcameup with the se-
quencediagramsandtheniteratedwith theCTAS engineer.
Theothermainrole of theCTAS engineerwasto integrate
the code generatedfrom the statechartsinto the existing
CTAS systemandperformtestingon it. To summarizethe
results,this exerciseshowed that it is possibleto generate
codedirectly from UML sequencediagrams. This code
passedall testcases.Figure3 givesthe sequencediagram
for the requirement2.8.9above. Figure4 shows a portion
of thestatechartgeneratedfor CM. It includes2.8.9.

5 Observations

5.1 Expressingthe requirementsassequencedia-
grams

All ss-algorithmsusesomeform of sequencechart as
their input language— either UML sequencediagrams,
high-levelmessagesequencecharts(hMSCs)or similar. Se-
quencediagramsare an attractive choicebecauseof their
simplicity. For addedexpressivity, however, we usedan
extendedversionof sequencediagramswith explicit state
labels. For this casestudy, the requirementsare already

F2Panel CMCycle CM Client_Status Client

POSTINITIALIZE POSTINITIALIZE

FAILED_USE

DONE

no_CTAS_USE_NEW_WTHR

FAILED_USE

CM_CLOSE_CONNECTION
enableSetButton

Figure 3. Scenario 2.8.9

POSTREVERT

UPDATE

 writeToCMSim(forecast);CM_CLOSE_CONNECTION

FAILED_GET

FAILED_USE

SUCCEEDED_GET

DONE

checkForUpdates[forecast.isLive()]

null/removePendingWeather;enableSetButton;

POSTUPDATE
FAILED_USE

FAILED_USE/enableSetButton;

CM_CLOSE_CONNECTION
POSTINITIALIZE

Figure 4. Part of the generated statec har t

state-oriented— statesare usedboth as preconditionsto
scenariosandwithin scenariosto synchronizethestatesof
asubsystem(e.g.,clientor panel).

Initially, the authorsbegan modeling the requirements
directly asa setof statemachines.This turnedout to be
a surprisinglydifficult exercise,however. The CM hasa
numberof statescorrespondingto the currentstateof the
WeatherCycle: unknown, preinitializing, initializing, pos-
tinitializing, preupdating,updating,postupdating,postre-
verting and done. Each weather-aware client has these
statesin addition to statesdescribingwhetheror not the
clienthasreceivednew weatherdataandwhetheror notit is
ableto usethisnew weatherdata(succeededget,failed get,
succeededuse,failed use).In orderto capturetherequire-
mentscorrectly, thestatesof theCM andof theclientsmust
betightly coupledtogether. Thesecouplingsaredistributed
acrossthe entire requirementsdocumentandso capturing
them directly as statemachinesis a time consumingand
error-pronetask.In contrast,translatingthetwentyrequire-
mentsinto sequencediagramstookaboutonehourof cleri-
calwork.

Therewere,however, a numberof issuesthat couldnot
easily be expressedas sequencediagrams(or any other
sequencechart notation). Many of the messagesin the

3

requirementsareuniversalor existentialmessages— that
is, the scenariois dependenton receiptof a messagefrom
all (alternatively, any oneof) the instancesof a classifier.
It is unclearhow to representthis on a sequencediagram.
Of course, this could be done by attaching a textual
note but the difficulty is representingthis information
in such a way that a synthesisalgorithm can generate
appropriatestatesfor it. One possibility is to useUML’s
constraint language,OCL ([8]). The requirementthat
“all connected weather-aware clients have responded
yes to the CTAS USE NEW WTHR” messagecould be
written as Client.allInstances()-> forall(i
| receive(CM, yes CTAS USE NEW WTHR, i))
where "�#�$%#�&�'!#)(�&+*-,.*�/)0 denotesthe receiptof message,
from instance/ by instance & . The problem with using
OCL is that theuseris giventoo muchfreedomto specify
arbitrary constraintsthat may or may not be relevant to
synthesis.Thesynthesisalgorithmwould needto look for
OCL patternsto trigger the generationof the appropriate
state machinetransitions. This would rely on the user
specifying the constraintin the form given above rather
than a semanticallyequivalent one. An alternative is to
include special textual (or graphical) syntax to denote
existentialityor universality. In general,however, this may
be inadequateif there turns out to be a large numberof
specialcaseslike this one. In this casestudy, it turnedout
to besufficient to encodetheuniversality(or existentiality)
directly in the messages— i.e., to senda messageto all
clients, a new message1�#�23 465 7)898 is created. This is
adequatebut, in general,it seemsbeneficialto be able to
expressthis kind of informationexplicitly.

Sequencediagramsarecurrentlyinadequatefor describ-
ing generalizedscenarios. A generalizedscenariois one
thatdescribesa setof possiblescenariosratherthana sin-
gle trace. We give two examplesof generalizedscenarios
here. Firstly, onemay wish to specify that a messagecan
be sentor received at any point during an interaction. In
hMSCs,this couldbeexpressedusingcoregions. Alterna-
tively, a groupof messagesmay be order independent—
i.e.,thereisascenariofor eachpossibleorderingof themes-
sagesandall arevalid. Clearly, describingeachof thesesce-
nariosindividually is time consuming.For hMSCs,order-
ing of messagescanbeleft underspecifiedusingcoregions.
Many generalizedscenarios(but not all) canbe expressed
usinghMSCs.However, currentss-algorithmscannotgen-
erateappropriatestatesfor generalizedscenarios.Hence,
theuseof thesealgorithmscanleadto mismatchesbetween
theinput sequencesandthegeneratedstatemachines.One
possibleapproachto includinggeneralizedscenariosin ss-
algorithmsis to generatehierarchicalstates. For exam-
ple,therequirementthatacomponentcanreceivemessages
,;:�*<,>=�*<,>? in any order can be succinctlyexpressedus-
ing orthogonalstatesandthejoin operator(which impedes

progressuntil all its input transitionshavefired)— seeFig-
ure5.

m1

m2

m3

any order

m1 m2 m3

Figure 5. Translating Generaliz ed Scenarios

The useof statelabelsaloneis alsoinsufficient in gen-
eral. The continuationfrom onesequencediagramto an-
other can be expressedby statelabels(seeFigure 3) but
a bettersolutionwould have beento usehMSCs. hMSCs
includea notationfor specifyinghow individual sequence
chartsconnectusingcontinuation,iterationandchoiceop-
erators.On theotherhand,hMSCsaremorecomplex than
sequencediagrams. Note, also, that statelabelsare still
neededin hMSCsfor connectingpoints in the middle of
asequencechart.

In total, twenty requirementswere translatedinto se-
quencediagrams.The procedurewasmostly painless,the
maindetailbeingin decidingon which componentsto rep-
resentin the diagrams.For example,we decidedto repre-
sentClient Statusexplicitly asa componentbut could al-
ternatively have representedit asa variable. Onesugges-
tion for ss-algorithmsis to allow the userto specifyhow a
componentshouldbetranslated— currently, all algorithms
will generateastatemachinefor eachcomponentin these-
quences.However, it may be useful to be able to give a
componentexplicitly in thesequencediagrambut thenim-
plementit in thedesignor codeasavariable.For detailson
thestructureof thesequencediagrams,seesection6.

5.2 Translating into statecharts

Thetwentysequencediagramsweretranslatedinto stat-
echartsusingthealgorithmin [10]. Therequirementscen-
tred aroundthe behavior of CM andClient Statusso stat-
echartsweregeneratedonly for thesecomponents.There
werenot enoughmessagesto make it meaningfulto gener-
ateastatechartfor F2Panel.For Client,no informationwas
specifiedasto whenit shouldsendits messagessoahighly
non-deterministicstatemachinecouldhave beengenerated
andpossiblyusedto generatetest cases,but this wasnot
done(testcasesweredevelopedmanually).

The major barrier in the useof ss-algorithmscurrently
is in avoiding over-generalizationof the input scenarios.
Many formsof generalizationarepossible– e.g.,generaliz-
ing aconcreteinstanceto avariable,generalizingamessage

4

to besentto all instancesof aclass– but mostof theseprob-
ablycausemoreproblemsthanthey solvebecauseit is very
difficult to identify over-generalizationsin ageneratedstate
machine(it requiresthoroughlyunderstandingthestatema-
chineandfailureto do somayresultin bugs).Thereis one
form of generalizationthat is crucial for ss-algorithmsto
work well, however– thatof mergingsamestatesfrom dif-
ferentscenarios.If no attemptis madeto mergestates,the
resultis astatemachinewith essentiallyonebranchfor each
scenariothatcontainsa lot of redundantstatesandduplica-
tion of transitions.A varietyof approachesto this problem
have beenproposed.Our algorithm[10] takesa heuristic
approach– statescanbemergedif they haveanidenticalse-
quenceof transitionsabove somegivenlengthleadinginto
andout of them.

Figure 4 illustratesthe benefitof merging. Thereare
three transitionswith the trigger FAILED USE. In two
cases,thepathsfollowing FAILED USEin thecorrespond-
ing scenariosarethe sameandsoaremerged. In the third
case,mergingis notappropriatebecausethefollowing path
is analternative. In general,merging in this way produces
amuchmoreconciseandreadablestatemachine.Research
still needsto be done,however, on the bestwaysto intro-
ducemerging. Using our heuristicapproach,over-zealous
mergingcanstill occur— in thiscasestudy, asmallnumber
of over-generalizationshadto bemodifiedby hand.

Theothermajorobservationmadeduringapplicationof
the ss-algorithmwasthat thereweresome“hiddendepen-
dencies”in thesequencediagrams.ConsiderFigure1. Ac-
cordingto thesemanticsof thealgorithm,component@ is
only dependentonmessagesA and 1 , andhence,only A and
1 will appearin @ ’s statemachine.However, it maybethat
messageA canonly besentonceB hasbeenreceivedby C
(alternatively, sendingA maybeindependentof B). Weterm
sucha dependency “hidden”. Our ss-algorithmhasno way
to detecthiddendependenciesand the resultingstatema-
chineswill not synchronizecomponentscorrectly in such
cases.Our solutionwas to addan explicit handshake be-
tweencomponentsC and @ . Thissolutionworkedwell but
tool supportfor detectinghiddendependencieswould have
beenuseful. Early researchin this areahasbegun [6] but
wedid not try out thesetechniqueson thiscasestudy.

5.3 Generatingcode

Once statemachineswere generatedfor the CM and
Client Statuscomponents,theRationalRoseRealTimetool
wasusedto generateC++ code. This codewastheninte-
gratedinto the existing CTAS codebase.This wasgener-
ally a straightforward process. Eachaction in the transi-
tions correspondedto a methodin the original codebase.
In theoriginaldesign,theweatherupdatesubsystemof CM
is polled from its environmentevery two seconds. Once

polled,themodulerunsto completion,finishingby sending
amessageto oneor moreclients.At thispoint, theweather
updatesubsystemyields the focusof control. In order to
facilitatethis, thestatemachinesgeneratedweregivenad-
ditional triggers.Yieldingof focusof controlcanoccurin a
givennumberof states.Whencontrolis regained,execution
shouldcontinuefrom theexit state.Thesestatesweregiven
a trigger that is calledfrom theenvironment. This mecha-
nismgivesthe samebehavior asthe two secondpolling in
theoriginaldesign.

At the point of integratingthe code,a small numberof
misunderstandingswerediscoveredin the way the scenar-
ios had beenwritten. Thesemodificationswere madeto
thestatemachineandcodere-generated.Unfortunately, in
thetime crushthatwasnow ensuing,changeswerenot re-
flectedin thescenarios.This leadsusto theconclusionthat
a crucialpartof this technologyshouldbeto automatically
maintainconsistency betweensequencediagramsandstate
machines.Thiscouldbedonewith a“backwardsdirection”
algorithmthat keepstrack of the changesto the statema-
chineandsuggestscorrespondingchangesin thescenarios.
Althoughtherehasbeensomeresearchonthis topic,agood
solutionhasnotyet beenfound.

RoseRealTimegeneratescodethatincludesits own run-
time serviceslibrary. The CTAS teamwere not readyto
accepta third partylibrary suchasthisbecauseof concerns
aboutreliability. As a result, the codewas generatedus-
ing RealTime passiveclasseswhich do not requirea run-
time library. Statemachinesfor passive classes,however,
have a synchronousmodelof execution— all triggersare
just functioncallssothereareno eventqueuesonstatema-
chines. The main problemwith this is that the sequence
diagramswere written assumingan asynchronousmodel.
As a result,the statemachinedid not exhibit the expected
behavior. This mismatchnecessitatedsomeminor changes
to thestatemachines.

6 ResultsSummary

Tables1 and2 givesomebasicstatisticson theproblem
scenariosandthe generatedartifactsfor the portion of the
weathercontrollogic subsystemconsideredin thispaper. If
wehadusedhMSCsinsteadof sequencediagramsextended
with statelabels,we could have avoidedinsertingmostof
the statelabels. The RoseRT commentsreferredto in the
tablearespecialcommentsintroducedby theRoseRT code
generatorto keeptrackof which codeis auto-generatedfor
thepurposesof round-tripengineering.

Whilst theauthorsbelieve this casestudyto provide ev-
idencethat transitioningmostlyautomaticallyfrom scenar-
ios to code is possible,it shouldbe noted that this case
studyhasa numberof characteristicsthatmay or maynot
be sharedwith other examples. Firstly, the requirements

5

General data
of sequencediagrams 17
of componentsperdiagram 3-6

Messagesdata
total # of messages 75
of messagesperdiagram 2-12
average# of messagesperdiagram 4.4
of messagesthatdon’t appearin statemachines 0

Statelabelsdata
of statelabels 45
of statelabelsavoidedby hMSCs 36

Table 1. Sequence diagram statistics

CM Client Status
states 15 11
LOC generatedby RoseRT 986 640
LOC w/out RoseRT comments 672 404

Table 2. State machine statistics

werevery well developed.They representa completeand
consistentview of the systemandhence,therewerevery
few andonly minor iterationsin developingthe scenarios.
In a casewhere the ss-algorithmwas being usedto help
develop the requirements,additionalresultswould be ob-
served. Secondly, the lengthof the sequencediagrams(in
termsof numberof messages)turnedout to bequitesmall
on average.This is becausetherequirementswerealready
well structured.This might not bethecasefor examplesin
which the requirementswerevague.Thirdly, it is interest-
ing tonotethattherequirementsalreadyidentifymostof the
states(e.g.,postinitialize)thatappearin thestatemachine.
Clearly, thescenarioswerewritten from a state-basedper-
spective which may have madethe transitionto statema-
chineseasier. In summary, though,webelievethatthiscase
studyrepresentsa realisticexamplethat providesinterest-
ing resultsto theresearchersin this field.

7 Conclusions

This casestudy has shown that it is possibleto gen-
eratecodemostly automaticallyfrom scenariosof the in-
tendedbehavior. Although therearestill somehurdlesto
overcome,we believe it would have beenpossiblefor the
CTAS engineerto carryout this processindependently. In-
terestingly, the engineercould very easily understandthe
sequencediagramsbut hadtroubleunderstandingthestate-
chartsgenerated.Thehardestpartof theprocesswasactu-
ally in integratingthegeneratedcodeinto theexistingCTAS
system.In particular, themessageshadto bemappedto ex-
isting methodcallsandthe previous implementationmade

useof variablesto representtheweathercycle thatbecame
obsoletebut werestill usedby othercomponents.

In generatingstatechartsfrom scenarios,simple algo-
rithms work the best. The moreadvancedfeaturesof our
particularalgorithm werenot usedandwe would conjec-
turethatothercomplex mechanismsdesignedto avoid over-
generalizationwould causetoo much confusion. Current
ss-algorithmsaregenerallygoodenoughto do areasonable
job. The main areathat is not currentlywell supportedis
in maintainingthe consistency of the differentviewpoints
undermodificationsto thegeneratedartifacts.

References

[1] D. Denery, H. Erzberger, T. Davis, S. Green, and
B. McNally. Challengesof air traffic managementre-
search:Analysis,simulationandfield test. In AIAA
Guidance, NavigationandControl Conference, 1997.

[2] D. Harel.Statecharts:A visualformalismfor complex
systems.Scienceof ComputerProgramming, 8:231–
274,1987.

[3] RationalRoseRealTime. RationalSoftwareCorpora-
tion, Cupertino,CA, 2002.

[4] T. Sysẗa. Incrementalconstructionof dynamicmod-
els for objectorientedsoftwaresystems. Journal of
ObjectOrientedProgramming, 13(5):18–27,2000.

[5] S.Uchitel andJ.Kramer. A workbenchfor synthesiz-
ingbehavior modelsfrom scenarios.In Proceedingsof
the 23rd IEEE InternationalConferenceon Software
Engineering(ICSE01), Toronto,Canada,2001.

[6] S.Uchitel,J.Kramer, andJ.Magee.Detectingimplied
scenariosin messagesequencechartspecifications.In
Proceedingsof the 9th EuropeanSoftware Engineer-
ing Conference(ESEC01), Vienna,Austria,2001.

[7] A. van Lamsweerde. Inferring declarative require-
mentsspecificationsfrom operationalscenarios.IEEE
Transactionson Software Engineering, 24(12):1089–
1114,1998.

[8] J.WarmerandA. Kleppe.TheObjectConstraint Lan-
guage: PreciseModelingwith UML. Addison-Wesley
ObjectTechnologySeries.Addison-Wesley, 1999.

[9] K. Weidenhaupt,K. Pohl, M. Jarke, andP. Haumer.
Scenariosin systemdevelopment: Currentpractice.
IEEESoftware, pages34–45,March/April 1998.

[10] J. Whittle and J. Schumann. GeneratingStatechart
DesignsFrom Scenarios. In Proceedingsof Inter-
national Conferenceon Software Engineering(ICSE
2000), pages314–323,Limerick, Ireland,June2000.

6

